INTEGRATION VON KI-AGENTEN MIT API-WORKFLOWS

In today’s digital transformation era, AI agents and APIs are reshaping how businesses automate
workflows. By combining the autonomous decision-making of AI agents with the connective
power of APIs, organizations can streamline processes, reduce manual work, and enable
intelligent, adaptive operations.

In this article we will present and explain the implementation steps of how we at Ähdus
Technology are integrating agenting AI solutions within API workflows for some of our AI based
projects. In today’s time, every scaled product must be dealing with API driven product
development and this might be helpful for your software and AI teams to combine best strategies
together based on our experiences.

What are AI Agents?
Before we explore API workflows, let us first look into AI agents. AI agents are autonomous
software systems capable of perceiving their environment, reasoning, and taking actions without
continuous human input. They use techniques such as machine learning and natural language
processing (NLP) to interpret data, execute multi-step tasks, and learn from feedback. The future
belongs to AI Agents, every product will be having AI Agents, sooner or later.

Key Characteristics of AI Agents

Table 1: Key Characteristics of AI Agents

Types of AI Agents
AI agents vary in complexity and functionality. Here’s a simplified classification:

Table 2: Types of AI Agents

Role of APIs in Automation
APIs (Application Programming Interfaces) are the backbone of digital connectivity. They allow
different software systems to communicate, enabling automation across multiple platforms. In the
context of AI agents, APIs serve two critical functions:

  • Data Ingestion: AI agents rely on real-time data from various systems; databases, CRMs,
    social media, IoT devices; which is provided via APIs.
  • Action Execution: Once an AI agent decides on an action, APIs allow it to interact with
    external systems (e.g., updating records, triggering workflows, or processing
    transactions).

Benefits of API-Driven Automation

Table 3: Benefits of API-Driven Automation

Common Use Cases
AI agents integrated with APIs have wide-ranging applications. Here are some prominent use
cases:

Table 4: Common Use Cases

Architecture Breakdown
Integrating AI agents with API workflows involves several layers; from data ingestion to
decision making and action execution. Below is a conceptual breakdown of the architecture.

Core Components

Table 5: Core Components
Figure 01: This diagram shows how external data flows through APIs into an integration layer, is
processed by the perception module and reasoning engine, then executed via API calls by the
action executor. Feedback loops help refine agent decisions.
Figure 02: This sequence diagram outlines how an AI agent processes a user request, retrieves
data via APIs, makes decisions, and executes an action through external systems.

Conclusion
Integrating AI agents with API workflows creates a powerful synergy that automates complex
tasks by combining intelligent decision-making with robust data connectivity. The layered
architecture; from perception to execution, ensures that AI agents can dynamically interact with
their environment, process data, and execute actions autonomously. As businesses continue to
adopt these technologies, the role of APIs in bridging systems and enabling scalable automation
will become even more critical.
This fusion of AI and API-driven automation not only drives efficiency and innovation but also
opens up new possibilities for transforming business processes across various industries.

Strategische Partnerschaft der Gruppe mit Gastimate Technologies GmbH

Islamabad-München, Ähdus Technology, ein führender Anbieter von Technologielösungen, hat eine
strategische Partnerschaft mit Gastimate Technologies GmbH, die Zukunft des Gasmanagements. Diese Allianz
markiert einen bedeutenden Meilenstein für Ähdus Technology und positioniert sie als strategischen Partner der Gruppe, nicht
nicht nur mit Gastimate Technologies GmbH, sondern auch mit deren Muttergesellschaft Camsol.io.
Ähdus Technology wird mit exzellenten, professionellen und erfahrenen Softwareentwicklern eng zusammenarbeiten mit
Gastimate Technologies GmbH als ihr Software-Entwicklungspartner werden wir dazu beitragen, ihre
Innovationsprojekte in den Bereichen Embedded und Mobile Applications.

Über das Projekt:

  • Implementierung der Embedded Software-Entwicklung für eine verwendete Core-Firmware-Software
    im GasVisor Smart Cylinder Produkt, um alle erforderlichen Dateneingabeparameter zu kalibrieren, die verwendet werden, um
    Um CO₂ in Gasflaschen zu berechnen, müssen wir eine Firmware-Software implementieren, die in der Lage sein könnte
    zum Messen, Berechnen und Verfolgen aller Echtzeitwerte in mehr als 25.000 Gasflaschen
    Geräte.
  • GasVisor App-Entwicklung mit Flutter Technologies, wir entwerfen und entwickeln die App
    zusammen mit anderen Teammitgliedern von GasVisor, das die zentrale Informationsstelle sein wird
    für alle Beteiligten und Endverbraucher, um die CO₂-Informationen direkt von
    intelligenter Zylinder.

    Über Gastimate Technologies GmbH:
    Gastimate Technologies GmbH bietet GasVisor an, die Zukunft des Gasmanagements. Ihr patentiertes
    IoT-fähige Lösung digitalisiert und automatisiert das CO₂-Gasflaschenmanagement und liefert außergewöhnliche
    Effizienz, Wirtschaftlichkeit und Sicherheit für Büros, Systemgastronomie, Hotels und Gasversorger. Durch
    Vereinfachung der Nachbestellung, Verbesserung des Kundenservice, Ermöglichung eines effektiven Asset-Managements und Förderung
    Nachhaltigkeit verändern sie den Gasmarkt Flasche für Flasche. Mit GasVisor, der Zukunft von
    Das Gasmanagement ist hier.
    Ähdus Technology ist stolz auf die Zusammenarbeit mit ihnen als professioneller IT-Dienstleister von
    Pakistan.

    Über Ähdus Technology:
    Ähdus Technology ist ein deutsch-pakistanisches Deep-Tech-Startup, das sich ausschließlich auf Industrial IoT, Full
    Stack Web & Mobile Application und Cloud Engineering. Seit der Gründung von Ähdus Technology von
    September 2021 bis jetzt haben wir etwa 35 Software-Entwicklungsprojekte abgeschlossen und jetzt sind wir
    Partnerschaften mit einigen deutschen Großunternehmen und vielen innovativen Startups aus der deutschen Region.
    Zusammenfassend lässt sich sagen, dass die strategische Partnerschaft zwischen Ähdus Technology und Gastimate Technologies GmbH
    markiert einen entscheidenden Moment für beide Unternehmen. Mit der umfassenden technischen Expertise von Ähdus Technology und
    Mit der innovativen GasVisor-Lösung von Gastimate verspricht die Zusammenarbeit eine Revolution im Gasmanagement
    in verschiedenen Branchen. Da Ähdus Technology seine globale Präsenz weiter ausbaut, ist diese Partnerschaft
    bekräftigt sein Engagement für die Bereitstellung hochmoderner Technologielösungen und die Weiterentwicklung der
    Landschaft der digitalen Transformation.

Wie berechnen wir die CO2-Emissionen in der Reise- und Einzelhandelsbranche?

CO2 emanations behave like a blanket in the air, catching heat in the environment, and heating up the Earth. This layer prevents the Earth from cooling and consequently raises worldwide temperatures. A worldwide temperature alteration would influence environmental conditions, food and water supplies, weather, and ocean levels. Let us show you our contribution in eventually lowering down the co2 emissions by offsetting co2.

Let’s pick one big aspect of Co2 emission, transportation and traveling via different means.

FLIGHT CARBON DIOXIDE EMISSION:

Climate change and flying: which portion of worldwide CO2 discharges come from flying? Flying is an exceptionally controversial subject in climate discussions. It accounts for around 2.5% of worldwide CO₂ outflows, yet 3.5% when we consider non-CO₂ impacts on climate. How we help calculate, your flight Co2 emissions is given below:

The flight emission calculator quantifies the direct and indirect CO2-equivalent emissions per passenger for a given flight distance. The estimated emissions represent an average value for the distance between a given pair of origin and destination airports. The quantification is based on the most recent international statistics on passenger and cargo loads and aircraft type usage. The estimated emissions per passenger represent the amount of CO2 equivalents to be reduced in K2 carbon footprint offset.

Calculation principles

The K2 flight calculator determines the quantity of CO2 emissions that an airplane gives off per passenger for a given flight distance. Nitrogen compounds and aerosols are also included and converted into CO2. The calculation is based on average consumption data for typical short-haul and long-haul airplanes. The calculation also considers whether you are flying economy, business, or first class.

The following steps we used in the flight calculator:

  1. User input. Coordinates for Departure and Arrival cities.
  2. Using latitude/longitude coordinates we calculated travel distance in km.
  3. Total fuel consumption (kg) per aircraft per kilometer including reserved fuel.
  4. Cabin class weighting scheme is also included (Economy, Business, and First class)
  5. Allocation to the Cargo load

Using the formula below we calculated the total CO2 emission for flight in Ton metrics

𝑬 = 𝒂𝒙 𝟐 +𝒃𝒙 +𝒄 𝑺 ∗ 𝑷𝑳𝑭 ∗ (𝟏 −𝑪𝑭) ∗ 𝑪𝑾 ∗ (𝑬𝑭 ∗ 𝑴 + 𝑷) + 𝐀𝐅 ∗ 𝐱 + A

E: CO2-eq emissions per passenger [kg]

x: Flight Distance [km] which is defined as the sum of GCD, the great circle distance, and DC, a distance correction for detours and holding patterns, and inefficiencies in the air traffic control systems [km]

S: Average number of seats (total across all cabin classes) PLF: Passenger load factor

CF: Cargo factor

CW: Cabin class weighting factor

EF: CO2 emission factor for jet fuel combustion (kerosene)

M: Multiplier accounting for potential non-CO2 effects

P: CO2e emission factor for preproduction jet fuel, kerosene

AF: Aircraft factor

A: Airport infrastructure emissions

Note:

LTO: Fuel consumption during landing and takeoff cycle including taxi [kg]

Short haul flight is defined as x < 1500km and long-haul flight as x > 2500km.

Carbon Footprint Car calculation steps 🚗

In transportation, another subcategory of Co2 emission is by traveling through cars which are around 4.6 metric tons

A regular traveler vehicle emanates around 4.6 metric lots of carbon dioxide each year. This expects the typical gas vehicle out and about today to have an efficiency of around 22.0 miles per gallon and cruises all over 11,500 miles each year. Each gallon of gas consumed makes around 8,887 grams of CO2.

The car emissions calculator quantifies the direct and indirect emissions per vehicle for a given distance traveled. The calculated emissions are based on the Eco invent life cycle assessment database and various mobility statistics. The aim is to provide users with a simple application, through which they can detail their car journey by inputting a few specifics and obtain a calculated result to raise awareness and lead to offsetting. The resulting emissions correspond to the amount of CO2 equivalents that can be reduced in K2 carbon offset projects.

Calculation principles

The K2 car calculator determines the CO2 emissions of a car that arise during a car journey. The calculation is made per car and not per person. It not only considers the direct emissions arising from fuel combustion but also so-called grey emissions. These arise from the production of the vehicle, the provision of road infrastructure, and the extraction, transportation, and processing of the crude oil.

The following steps we used in the car calculator:

  1. User input distance traveled (km) from point A to B
  2. Fuel type
  3. Fuel consumption in kg per 100km
  4. Car type (Compact car, Mid-range car, Luxury / SUV / Truck)